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Abstract 19 

Although the movement and aggregation of microplastics at the ocean surface has been well 20 

studied, less is known about the subsurface.  Within the Maxey-Riley framework governing the 21 

movement of small spheres with high drag in fluid, aggregation of buoyant particles is 22 

encouraged in vorticity-dominated regions. We explore this process in an idealized model of a 23 

three-dimensional eddy with an azimuthal and overturning circulation. In the axially symmetric 24 

state, particles that do not accumulate at the top boundary are attracted to a closed contour 25 

consisting of periodic orbits. Such a contour exists when drag on the particle is sufficiently 26 

strong. For small slightly-buoyant particles, this contour is located close to the periodic fluid 27 

trajectory. If the symmetric flow is perturbed by a symmetry-breaking disturbance, additional 28 

attractors arise near periodic orbits of fluid particles within the resonance zones created by the 29 

disturbance. Disturbances with periodic time dependence produce even more attractors, with a 30 

shape and location that recurs periodically, and which are composed of quasiperiodic orbits of 31 

rigid particles. Not all such contours attract, and particles released in the vicinity may instead be 32 

attracted to a nearby attractor. Examples are presented along with mappings of the respective 33 

basins of attraction.   34 
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Significance statement  40 

This paper investigates the phenomenon of aggregation of small, slightly buoyant, rigid body 41 

particles in a three-dimensional vortex flow. Our goal was to gain insights into the behaviour of 42 

slightly buoyant marine microplastic particles in a flow that qualitatively resembles ocean 43 

eddies. Attractors are mapped out for the steady axisymmetric, steady asymmetric, and non-44 

steady asymmetric vortices over a range of flow and particle parameters. Simple theoretical 45 

arguments are used to interpret the results. 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

https://doi.org/10.5194/egusphere-2023-1624
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



4 
 

I. Introduction  58 

Marine microplastic pollution has been a rising concern for the ocean environmental and for 59 

human health.  Microplastics (scales < 5mm) and nanoplastics (scales < 1 m) have been found 60 

in the tissues of marine animals, some of which are consumed by humans (Landrigan, et al. 61 

2023). This comes at a time when global production of plastics is projected to increase.  Most 62 

observations of marine microplastics have occurred at or near the sea surface, where 63 

concentrations are largest. However, the density of many types of particles, including high-64 

density polyethylene, is sufficiently close to that of sea water that suspension within the water 65 

column for long periods of time is feasible. Indeed, microplastics have been found well beneath 66 

the ocean surface, but less is known regarding their spatio-temporal distributions (Shamskhany et 67 

al. 2021).  68 

A potentially important aspect of the movement of plastics and microplastics is aggregation, a 69 

process that occurs at the surface over large scales near the centers of the five major subtropical 70 

gyres and has been attributed to Ekman drift, windage and inertia (Beron-Vera, 2021).   Many 71 

early models concentrated on the ocean surface, but Froyland et al. (2014) has highlighted the 72 

importance of resolving the full three dimensional circulation.  If aggregation also occurs below 73 

the surface, well beneath the direct influence of Ekman layers, the dynamics is likely to be 74 

different.  Indeed, modeling results by Wichmann et al. (2019), and based on a framework 75 

created by Lange and van Sebille (2017) and Delandmeter and van Sebille (2019), suggests that 76 

the large scale accumulation associated with the garbage patches disappears below 60m depth.   77 

Typically the position X(t) of a non-fluid particle is tracked according to  78 

  𝑋(𝑡 + ∆𝑡) = 𝑋(𝑡) + ∫ 𝑣𝑑𝑡 + 𝑑𝑋𝑏
𝑡+∆𝑡

𝑡
, 79 
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where v is the fluid velocity and dXb is an extra displacement due the non-fluid nature of the 80 

particle. The user can introduce custom schemes for calculating contributions to dXb due to 81 

factors such as windage and inertia (e.g. Beron-Vera et al. 2016), turbulent diffusion (e.g. 82 

Kulkulka, 2012), wave induced Stokes drift (Onink et al. 2019), etc. Eulerian schemes in which 83 

plastic particles are treated as concentrations, are rare, but Mountford and Morales Maqueda 84 

(2019) developed an Eulerian model in which concentrations are advected by the fluid and are 85 

subject to parameterized turbulence as well as sinking or rising according to a simple law 86 

involving buoyancy and friction.  87 

An alternative approach would be to use the Maxey-Riley equation (discussed below) to solve 88 

for the particle velocity v in the above equation, then use the latter to compute the trajectory of 89 

that parcel. This equation would account for effects such as inertia and added mass in a 90 

deductive way, however the resulting 6
th

-order system (for the three components of velocity and 91 

position) would be computationally challenging.  To better understand the implications of the use 92 

of this approach while avoiding the computational burden and complexity, we have elected to 93 

analyze the movement and aggregation of individual particles using a Maxey-Riley framework in 94 

connection with an idealized, 3D flow field resembling the circulation in an ocean eddy. The aim 95 

is to develop a basic understanding of the circumstances that would lead to aggregation of rigid 96 

particles in ocean mesoscale and submesoscale eddies.  We note that other idealized studies have 97 

been carried out in connection with 2D wave fields and vortex flows (e.g. DiBenedetto 2018a,b 98 

and Kelly et al., 2021). 99 

Aggregation can be attributed to the presence of an attractor: here, an object with a dimension 100 

less than three that is somehow set up by the fluid circulation patterns and towards which rigid 101 

particle trajectories attract. As long as the fluid is incompressible, fluid parcels will not 102 
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experience attraction and will not aggregate, but plastic particles with inertia, added mass, and 103 

drag may do so. In order to reach a better understanding of what leads to attraction and attractors 104 

in 3D flows, we explore a canonical example in geophysical fluid dynamics, namely the flow in 105 

a rotating cylinder. This flow has some of the characteristics of ocean eddies, including a 106 

horizontal swirl and an overturning component in the vertical. The Lagrangian properties of this 107 

circulation have been previously studied (Fountain, et al. 2000; Pratt et al. 2014; Rypina et al. 108 

2015) allowing us to begin to investigate inertial particles from an established base of 109 

knowledge. A prior theory (Haller and Sapsis, 2008) governing the movement of particles with 110 

high drag indicates that accumulation is favored for slightly buoyant particles in flows dominated 111 

by vorticity, and this also motivates our choice of background flow. Identification of the 112 

attractors that can arise in this flow field, evaluating their reach and domains of attraction, and 113 

clarifying the circumstances that lead to their formation are the primary objectives of this work.  114 

II. Methods  115 

The physics of the motion of a small, rigid sphere that moves with velocity 𝑣⃑(𝑡) through a fluid 116 

with pre-existing velocity distribution 𝑢⃑⃑(𝑥⃑, 𝑡) has been the subject of investigation by Stokes 117 

(1851),  Basset (1888), Boussinesq (1903), Faxen (1922), Oseen (1927), Tchen (1947) and many 118 

others, and was put in a unifying framework by Maxey and Riley (1983).  More recent 119 

theoretical extensions include Beron-Vera et al. (2019) and Beron-Vera (2021). We will use a 120 

form of the Maxey-Riley equation that has been extended to include constant frame rotation with 121 

angular velocity Ω⃑⃑⃑∗: 122 

𝑑𝑣⃑⃑

𝑑𝑡
=

𝜌𝑓

𝜌𝑝

𝐷𝑢⃑⃑⃑

𝐷𝑡
+

𝜌𝑓 

2𝜌𝑝
(

𝐷𝑢⃑⃑⃑

𝐷𝑡
−

𝑑𝑣⃑⃑

𝑑𝑡
) −

9𝜈𝜌𝑓

2𝜌𝑝𝑑2
(𝑣⃑ − 𝑢⃑⃑) + (1 −

𝜌𝑓

𝜌𝑝
) 𝑔⃑ +

𝜌𝑓 

𝜌𝑝
Ω⃑⃑⃑∗ × (𝑢⃑⃑ − 𝑣⃑)      123 
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+
𝜌𝑓 

𝜌𝑝
2Ω⃑⃑⃑∗ × 𝑢⃑⃑ − 2Ω⃑⃑⃑∗ × 𝑣⃑ + (

𝜌𝑓

𝜌𝑝
− 1) Ω⃑⃑⃑∗ × Ω⃑⃑⃑∗ × 𝑟 .                                                                        (1) 124 

In this statement of Newton’s second law for the rigid particle, the right-hand side represents, in 125 

order, the effects of inertia, added mass, drag, buoyancy, Coriolis acceleration associated with 126 

the added mass, the Coriolis acceleration associated with the particle mass, Coriolis acceleration 127 

associated with the fluid motion, and centripetal acceleration. (See Beron-Vera, et al. 2019 for a 128 

derivation, though the centripetal acceleration appears to have been omitted.)  We have omitted 129 

the lift force, the Basset history force, and the Faxen corrections (Gatignol,1983). Here 𝜌𝑝 and 130 

𝜌𝑓are densities of the particle and the fluid, 𝑑 is the particle radius, 𝜈 is viscosity of the fluid, 𝑔⃑ 131 

is the gravity vector, and 
𝐷𝑢⃑⃑⃑

𝐷𝑡
=

𝜕𝑢⃑⃑⃑

𝜕𝑡
+ 𝑢⃑⃑ ⋅ ∇𝑢⃑⃑ is the fluid material derivative, evaluated for 132 

undisturbed fluid velocity at the position of the center of the particle. The position 𝑥𝑝(𝑡) of a 133 

particle is determined by     134 

𝑑𝑥𝑝

𝑑𝑡
= 𝑣⃑,                                                                                      (2) 135 

and together (1) and (2) compose a coupled, 6
th

-order system for computation of the particle 136 

position and velocity as functions of time.  137 

If the velocities and lengths are nondimensionalized using characteristic scales 𝑈 and 𝐿 for the 138 

background fluid flow, and 𝐿/𝑈 is used as a time scale, then (2) remains formally unchanged 139 

while the nondimensional form of (1) is 140 

  
𝑑𝑣⃑⃑

𝑑𝑡
=

3𝑅

2

𝐷𝑢⃑⃑⃑

𝐷𝑡
+ 𝜀̃−1(𝑣⃑ − 𝑢⃑⃑) + (1 −

3𝑅

2
) 𝑔⃑𝑟 + 3𝑅Ω⃑⃑⃑ × (𝑢⃑⃑ − 𝑣⃑) + 2 (

3𝑅

2
− 1) Ω⃑⃑⃑ × 𝑣⃑,                  (3)     141 
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where 𝑅 =
2𝜌𝑓

𝜌𝑓+2𝜌𝑝
 , 𝑔⃑𝑟 = (𝑔 − Ω⃑⃑⃑∗ × Ω⃑⃑⃑∗ × 𝑟)/(

𝑈2

𝐿
) , Ω⃑⃑⃑ =

Ω⃑⃑⃑∗𝐿

𝑈
 and  𝜀̃ =

2

9
(

𝑑

𝐿
)

2 𝑈𝐿

𝜈

1

R
 is the Stokes 142 

number, the ratio of the adjustment time scale of a particle (due to drag) to the time scale of the 143 

background flow. For  𝜀̃ ≪ 1, viscous drag is the dominant force acting on the particle, implying 144 

that a particle with an initial velocity differing by an amount > O(𝜀̃) from the local fluid velocity 145 

will be rapidly accelerated over a time scale 𝜀̃  to a velocity proximal to that of the fluid. 146 

Thereafter the particle will undergo a slow evolution in which the weaker forces due to inertia, 147 

added mass, and buoyancy cause slight departures from the movement of the fluid itself.   148 

The limit 𝜀̃ → 0 constitutes a singular perturbation of (3), a problem that can be addressed using 149 

an approach due to Fenichel (1979) that was originally formally developed for a steady 150 

background flow, but that has been extended by Haller and Sapsis (2008) to include a time-151 

varying background flow. In either case, it can be shown that following the initial viscous 152 

adjustment, the particle position and velocity tend toward a subspace or “slow manifold” on 153 

which the particle velocity is determined directly by the fluid velocity through an “inertial” 154 

equation, here extended to include frame rotation:  155 

𝑣⃑ = 𝑢⃑⃑ + 𝜀̃   (
3𝑅

2
− 1) [

𝐷𝑢⃑⃑⃑

𝐷𝑡
+ 2Ω⃑⃑⃑ × 𝑢⃑⃑ − 𝑔⃑𝑟] + 𝑂(𝜀̃ 2).           (4) 156 

This version with rotation was written down in Beron-Vera et al. 2019, though with 𝑔⃑𝑟 replaced 157 

by the non-generalized gravity vector 𝑔⃑. The same authors also present more general cases, 158 

including those with the lift force. In Supplementary Material we present a simple, alternative 159 

derivation of Eq. (4) based on a multiple-scale expansion instead of the Fennochel approach.   160 

A chief advantage of the slow manifold reduction is that the 6
th

 order system (2) and (3) is 161 

reduced to a 3
rd

 order system (2) and (4) in which the particle velocity is known in advance.  162 
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The bracketed expression in (4), which determines the velocity of the rigid particle relative to the 163 

fluid, is nothing more than 
𝜕

𝜕𝑥𝑗
𝜏𝑖𝑗, where 𝜏𝑖𝑗 is the stress tensor for the fluid. Thus the relative 164 

velocity of a rigid particle on the slow manifold is in the same direction as the net force that 165 

would act on a fluid particle occupying the same space.  Ordinarily, for a fluid particle, that force 166 

would equate with an acceleration, but on the slow time scale, the relative particle velocity points 167 

in the same direction as the net fluid force and its magnitude is proportional to 𝜀̃ (
3𝑅

2
− 1) 168 

=
2

9

𝑑2

𝐿2

𝑈𝐿

𝜈

(𝜌𝑓−𝜌𝑝)

𝜌𝑓
.  Since the aggregation of rigid particles requires departures of the particle 169 

velocity from the (divergence free) velocity field of the fluid, one can expect that aggregation 170 

will occur more slowly if  d and (𝜌𝑓 − 𝜌𝑝)/𝜌𝑓 are small, or if 𝜈 is large. At the same time, the 171 

existence of attractors internal to the fluid may depend on (𝜌𝑓 − 𝜌𝑝)/𝜌𝑓 being small: for 172 

example, a large density difference may mean that rigid particles simply sink to the bottom or 173 

rise to the surface.  174 

As pointed out by Haller and Sapsis (2008) (also see Beron-Vera et al. 2019), we can consider a 175 

continuous concentration of rigid particles with the like properties, and with smoothly varying 176 

velocity (4).  The aggregation of such a concentration would appear to require that the 177 

divergence of that velocity be negative (though see an apparent counterexample, presented later).   178 

Following Haller and Sapsis (2008), consider the evolution of a material volume of rigid 179 

particles. The time rate of change of this volume is 180 

𝑑𝑉

𝑑𝑡
= ∯ 𝑣⃑ ∙ 𝑛⃑⃑ 𝑑𝐴𝑉 = ∭(∇ ∙ 𝑣⃑)dV = ∭ ∇ ∙ [𝑢⃑⃑ + 𝜀̃ (

3𝑅

2
− 1) (

𝐷𝑢⃑⃑⃑

𝐷𝑡
+ 2Ω⃑⃑⃑ × 𝑢⃑⃑ − 𝑔⃑𝑟)] d𝑉              (5) 181 
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where ∇ ∙ 𝑢⃑⃑ = 0 for an incompressible fluid. Shrinking 𝑉 to an infinitesimal size allows the right-182 

hand side to be approximated by 𝑉  times the local value in the integrand, and the result may be 183 

integrated in time, yielding  184 

𝑉(𝑡) = 𝑉0 exp (𝜀̃   (
3𝑅

2
− 1) ∫ 𝛻 ⋅ (

𝐷𝑢⃑⃑⃑

𝐷𝑡
+ 2Ω⃑⃑⃑ × 𝑢⃑⃑ − 𝑔⃑𝑟) 𝑑𝑠

𝑡

𝑡0
)  185 

         = 𝑉0𝑒𝑥𝑝 (−2𝜀̃   (
3𝑅

2
− 1) ∫ [𝑄𝑟(𝑥(𝑠), 𝑠) + Ω⃑⃑⃑ ∙ 𝜁𝑟 + |Ω⃑⃑⃑|

2
]

𝑡

𝑡0
𝑑𝑠)   186 

         = 𝑉0𝑒𝑥𝑝 (−2𝜀̃   (
3𝑅

2
− 1) ∫ 𝑄𝑎(𝑥(𝑠), 𝑠)𝑑𝑠

𝑡

𝑡0
) .                        (6)                     187 

Here 𝑄𝑟 =
1

2
(|𝜁𝑟|

2
− |𝑆|2)   is the three-dimensional Okubo-Weiss parameter (Okubo, 1970; 188 

Weiss, 1991),  𝜁𝑟  represents the relative vorticity vector for the fluid, 𝑆 = 1/2(∇𝑢⃑⃑ + (∇𝑢⃑⃑)𝑇) is 189 

the strain tensor, and |𝑆| is its Frobenius norm.  The final step in (6) follows from introduction of 190 

the absolute vorticity vector  191 

𝜁𝑎 = 𝜁𝑟 + 2Ω⃑⃑⃑⃑⃑⃑                    (7) 192 

and the corresponding function 𝑄𝑎 =
1

2
(|𝜁𝑎|

2
− |𝑆|2).  We note that for a volume V of any size: 193 

𝑑𝑉

𝑑𝑡
= 2𝜀̃   (

3𝑅

2
− 1) ∭ 𝑄𝑎 dV = 𝜀̃   (

3𝑅

2
− 1) ∭

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝜏𝑖𝑗 dV =

2

9

𝑑2

𝐿2

𝑈𝐿

𝜈

(𝜌𝑓−𝜌𝑝)

𝜌𝑓
∯

𝜕

𝜕𝑥𝑗
𝜏𝑖𝑗𝑛𝑖 𝑑𝐴𝑉 ,   194 

(8) 195 

where 𝑛𝑗  denote the components of the outward unit vector normal to the bounding surface 𝐴𝑉 . 196 

Thus for buoyant particles, a volume 𝑉(𝑡) of any size will contract if the force normal to 𝐴𝑉 due 197 

to the fluid stresses, integrated around  𝐴𝑉, is inward. In many cases the stress tensor is 198 
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dominated by pressure, i.e., 
𝜕

𝜕𝑥𝑗
𝜏𝑖𝑗 ≅ −

1

𝜌𝑓
∇𝑝, so the tendency to aggregate is determined entirely 199 

by the pressure field.  200 

In general, 𝑄𝑎 can change sign along a particle trajectory, making it hard to predict whether the 201 

surrounding volume shrinks or expands with time. If a buoyant particle is trapped in a region in 202 

which 𝑄𝑎 is predominatly positive, then this region is a good candidate for aggregation.  203 

Persistent ocean eddies and other vortical structures are possibilities, not only because vorticity 204 

tends to dominate over strain, but also because such features have the ability to trap fluid for long 205 

periods of time. For dense particles, contraction occurs in areas dominated by strain, and it has 206 

been shown that aggregation of heavy particles can occur in strain-dominated filaments that arise 207 

in particle-laden turbulent flows, though the considered particle-to-fluid density differences tend 208 

to be quite large (see Brandt and Coletti, 2022 for a review). In our study, we will focus on 209 

eddies, and on lower dimension objects within eddies that can act as attractors for buoyant 210 

particles.  211 

A simple example of aggregation is given by Haller and Sapsis (2006), who argue that the 212 

elliptical center of a steady, non-divergent 2d eddy, with 𝑔⃑ = |Ω⃑⃑⃑|=0, acts as an attractor for 213 

buoyant particles. Here 𝑄𝑎 (now =𝑄𝑟), is ostensibly positive near the elliptical center of the 214 

eddy, corresponding to contraction of the phase space of the rigid particle motion. Since the 215 

central fixed point of the velocity field of the eddy is also a fixed point of the slow manifold 216 

particle velocity (4), buoyant particles initiated about the center should migrate towards the 217 

center. If the eddy is inviscid and its streamlines are circular, then the pressure and azimuthal 218 

velocity are related by the cyclostrophic balance 
1

𝜌𝑓

𝜕𝑝

𝜕𝑟
=

𝑢𝜃
2

𝑟
 so that 2𝑄𝑟 =

1

𝜌𝑓
(

1

𝑟

𝜕𝑝

𝜕𝑟
+

𝜕2𝑝

𝜕𝑟2), and 219 
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for an eddy in solid body rotation (𝑢𝜃 = Γ𝑠𝑟),  2𝑄𝑟 =
1

𝜌𝑓
(

1

𝑟

𝜕𝑝

𝜕𝑟
+

𝜕2𝑝

𝜕𝑟2
) = 2Γ𝑠

2.  As suggested in 220 

Figure 1a, a small concentration of particles indicated by the cross hatched area shrinks as it 221 

moves towards the center of the eddy. The contraction is partially due to the geometric effect of 222 

movement towards smaller radius (term 
1

𝑟

𝜕𝑝

𝜕𝑟
) but also due to the fact that the pressure gradient 223 

decreases to zero as the center is approached and thus the inner edge of the path moves more 224 

slowly inward than the outer part (term 
𝜕2𝑝

𝜕𝑟2
).  In the case of solid body rotation the two terms 225 

contribute equally.  A second example (Fig. 1b) is of an eddy with an azimuthal velocity given 226 

by 𝑢𝜃 = Γ𝐶𝑟1/2. Here 
𝜕2𝑝

𝜕𝑟2 = 0  and 2𝑄𝑟 =
1

𝜌𝑓
(

1

𝑟

𝜕𝑝

𝜕𝑟
) = Γ𝐶

2/ 𝑟 > 0, so the contraction of the patch 227 

is entirely due to the geometric effect of its movement towards smaller radius.  The most curious 228 

case is that of a point vortex: 𝑢𝜃 = Γ𝑃𝑟−1, for which 2𝑄𝑟 =
1

𝜌𝑓
(

1

𝑟

𝜕𝑝

𝜕𝑟
+

𝜕2𝑝

𝜕𝑟2) =
Γ𝑃

2

𝑟4 −
3Γ𝑃

2

𝑟4 <0. Here 229 

the vorticity is zero away from the eddy center and the velocity field is dominated by strain.  The 230 

pressure gradient increases as the center of the vortex is approached, meaning that the inner part 231 

of the patch moves towards the center more rapidly than the outer portion (Fig. 1c) and this 232 

tendency (quantified by the factor -
3Γ𝑃

2

𝑟4 ) surpasses the tendency towards geometrical contraction 233 

(quantified by the factor 
Γ𝑃

2

𝑟4).  The phase space of the particle motion thus expands as particles are 234 

drawn towards the center of the vortex.  This behavior is made possible by the singularity at the 235 

center, and although this feature is artificial,  point vortices are often used in idealized models of 236 

fluid flow and will act as sinks or “black holes” for buoyant particles even though 2𝑄𝑟<0.   237 

The sign of 𝑄𝑎 is clearly not the whole story and does not encompass the effects of boundaries.  238 

For example, consider the fate of  heavy (𝜌𝑓 < 𝜌𝑝) particles in the eddy show in Fig. 1a.  The 239 
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particles will migrate outward in each case, and no interior attraction will occur unless the eddy 240 

is surrounded by a rigid boundary, which would then act as an attractor.   241 

In the next section, we will consider a more general, 3D, eddy-like circulation: one that has both 242 

vertical and horizontal components of vorticity, time dependence, and a variety of vortical 243 

structures that act as candidates for attraction. Our model is based the incompressible flow in a 244 

rotating cylinder (Greenspan, 1986), which has been studied in many configurations by 245 

numerous authors as a models of ocean circulation, ocean eddies, and industrial processes, and 246 

can be easily set up in the laboratory setting.  It its original configuration the cylinder rotates 247 

about a vertical axis at a constant (positive) angular velocity (Ω⃑⃑⃑ = Ω𝑘)⃑⃑⃑⃑⃑, and the lid, which is in 248 

contact with the fluid, rotates with a slightly greater angular speed. The differential rotation sets 249 

up an azimuthal circulation in the horizontal and an overturning circulation in the vertical. 250 

(Overturning is observed in ocean eddies as well and Ledwell et al. (2008) present an example.)  251 

The steady, axially symmetric state that is established will be our first object of investigation.  A 252 

steady but asymmetric perturbed variant can be established by moving the axis of rotation of the 253 

lid away from the axis of rotation of the cylinder, and this offset can also be varied in order to 254 

induce time dependence.  Fountain et al. (2000) set a similar situation up in a laboratory cylinder 255 

using a submerged impeller that can be tilted, rather than the differentially rotating lid that can be 256 

shifted, to establish an asymmetric disturbance flow. The authors discussed the Lagrangian 257 

characteristics of the undisturbed flow and demonstrated the existence of secondary vortical 258 

structures generated when the flow is perturbed.  Pratt et al. (2014) reproduced similar structures 259 

using a primitive equation simulation and explored the rich assembly of chaotic regions and non-260 

chaotic vortical structures as function of the Ekman and Rossby numbers of the flow. The time-261 

dependent version of the rotating cylinder flow and a theory describing the resulting vortical 262 
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structures were discussed by Rypina et al. (2015), who based their examples on a 263 

phenomenological model that reproduced many of the qualitative features of the numerically-264 

obtained velocity field. In dimensionless Cartesian coordinates, the model velocity field is given 265 

by  266 

  𝑢(𝑥) = −𝑏𝑥(1 − 2𝑧)
𝑟𝑜−𝑟

3
− 𝑎𝑦(𝑐 + 𝑧2) + 𝜀 [𝑦(𝑦 − 𝑦𝑜 + 𝛾𝑐𝑜𝑠(𝜎𝑡)) −

𝑟𝑜
2−𝑟2

2
] (1 − 𝛽𝑧) ,     (9a) 267 

  𝑢(𝑦) = −𝑏𝑦(1 − 2𝑧)
𝑟𝑜−𝑟

3
+ 𝑎𝑥(𝑐 + 𝑧2) − 𝜀𝑥(𝑦 − 𝑦𝑜 + 𝛾𝑐𝑜𝑠(𝜎𝑡))(1 − 𝛽𝑧),       (9b) 268 

  𝑢(𝑧) = 𝑏𝑧(1 − 𝑧)
2𝑟𝑜−3𝑟

3
,               (9c) 269 

in which 𝑟 = (𝑥2 + 𝑦2)1/2 and 𝑟𝑜 is the cylinder radius.  The velocity field consists of a steady, 270 

axially symmetric flow of strength a with an overturning circulation of strength b. To this 271 

symmetric state one can add an asymmetric, possibly unsteady and depth dependent, perturbation 272 

of amplitude 𝜀 (not to be confused with the Stokes number 𝜀̃).  The perturbation is quantified by 273 

an offset parameter 𝑦𝑜 that introduces axial asymmetry in the velocity field, a frequency , and 274 

an amplitude   for linear depth dependence and an amplitude  for the time dependence.  For the 275 

case of axially symmetric, steady flow (𝜀 = 0) the horizontal velocity field, in cylindrical 276 

coordinates, becomes 277 

 𝑢(𝑟) = −𝑏𝑟(1 − 2𝑧)
𝑟𝑜−𝑟

3
                      (10a) 278 

and 279 

 𝑢(𝜃) = 𝑎𝑟(𝑐 + 𝑧2),                      (10b) 280 
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where 𝜃 is the azimuthal angle.  Table 1 lists the parameter values used for each numerical 281 

experiment.  282 

In the steady, symmetric configuration, each fluid trajectory is confined to the surface of a torus 283 

as it winds around the cylinder. The typical torus is associated with quasi-periodic trajectories 284 

and any such trajectory, followed for a sufficient length of time, will sketch out the torus in 3D. 285 

Fig. 2b contains several examples of such tori and Fig. 2a shows the corresponding Poincare 286 

map, made by marking the crossing points of trajectories through a vertical slice through the 287 

cylinder. After a large number of crossings each quasi-periodic trajectory traces out the cross 288 

section of the torus on which it lives. The tori are nested within each another, with a single, 289 

horizontal, periodic trajectory located at the center of the nest.  Certain tori contain periodic 290 

trajectories, and these will show up as a finite number of dots on the Poincare map.  Because of 291 

this geometry, the motion of fluid parcels is most naturally described in terms of action-angle-292 

angle variables, where the action, 𝐼, acts a label for a particular torus and is constant following 293 

each trajectory, and the two angle variables, 𝜃̃  and 𝜙, define the location of a parcel on the torus. 294 

Here 𝜃̃  is an azimuthal angle that differs from the above cylindrical coordinate 𝜃 in how its 295 

origin is defined, while the ‘poloidal’ angle 𝜙 wraps around the cross-section of each torus.  The 296 

coordinate are non-orthogonal but are defined in such a way that the angular velocities, Ω𝜃̃ and 297 

Ω𝜙, are also constant following a trajectory. The explicit transformations to the action-angle-298 

angle variables are given in Mezic and Wiggins (1994).  299 

When the symmetric RC flow is perturbed by a small, steady, symmetry-breaking perturbation, 300 

as controlled by the parameters  and yo in (9),  the tori that are populated by periodic orbits 301 

potentially become resonant and break up, resulting in chaotic motion of fluid parcels in the 302 
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vicinity (Fig. 2d-i). Tori with quasiperiodic orbits deform but stay intact. Examples are discussed 303 

by Fountain et al. (2000) and Pratt et al. (2013), and the latter found that chaos generally 304 

dominates in a large region that includes the central axis of the cylinder and extends around the 305 

boundaries of the cylinder. Away from this region the space is occupied by tori that have 306 

survived the perturbation, and these are sandwiched between tori that have broken up and created 307 

braided regions of chaos. The breakup of a torus also gives rise to new tori that appear as islands 308 

in the Poincare maps (Fig. 3d and 3g) and these contain non-chaotic trajectories. The number of 309 

islands can be predicted by a theory that decomposes the symmetry-breaking perturbation into 310 

Fourier modes, written in the (I, 𝜃̃,𝜙) coordinates, with wave numbers n and m in the 𝜃̃ and 𝜙 311 

direction. If the angular velocities Ω𝜃̃ and Ω𝜙  characterizing the trajectories on a particular torus 312 

satisfy the resonance condition 𝑛Ω𝜃̃ + 𝑚Ω𝜙 = 0 for some n and m, equivalent to the trajectories 313 

on that torus being periodic, then that torus will break up and a new set of invariant tori (islands) 314 

will form. Running through the center of the islands will be a periodic trajectory that will execute 315 

n azimuthal cycles to every m poloidal (overturning) cycles. In the case shown in Fig. 3a, 316 

n=m=1, so the periodic trajectory circles the cylinder horizontally once for each overturning 317 

cycle: a so-called 1:1 resonance.   318 

If the symmetry breaking perturbation is quasi-periodic in time, with underlying frequencies 𝜎𝑖, 319 

the resonance condition for the breakup of a torus becomes 𝑛Ω𝜃̃ + 𝑚Ω𝜙 + 𝑙𝑖𝜎𝑖 = 0, where 𝑙𝑖’s 320 

are integers (Rypina, et al. 2015). Unlike the resonance condition for the steady perturbation, 321 

which is only satisfied on tori foliated by periodic trajectories, this new resonant condition may 322 

be satisfied on tori that have quasi-periodic orbits, and the resonant islands that form will have a 323 

shape and location that vary in time. An example (Fig. 2g,h) of the case of a resonance with a 324 

single-frequency (i.e., time-periodic) perturbation shows a number of resonant islands. These 325 
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features vary in time, recovering their shape and location periodically, and the snapshots shown 326 

are obtained by strobing the trajectories in 3D and at the forcing frequency. The green and blue 327 

islands in Fig. 2h have resulted from the breakup of tori with quasiperiodic trajectories, and 328 

center of the island corresponds to a closed material curve that is populated with quasiperiodic 329 

trajectories.    330 

III. Results 331 

Aggregation of rigid particles will occur in presence of an attractor, an object with a dimension 332 

<3 to which particles tend asymptotically in time. We are most interested in attractors that occur 333 

in the interior of the rotating cylinder, and are set up by the background circulation, as opposed 334 

to the physical boundaries of cylinder.   We will see that a closed material contour consisting of 335 

periodic orbits near the core of the nested tori in the steady symmetric case act as an attractor for 336 

slightly buoyant particles, and that similar material contours consisting of periodic or 337 

quasiperiodic orbits near the centers of the resonant islands in the asymmetric cases can play the 338 

same role. We will explore three cases in increasing complexity, beginning with steady flows 339 

with axial symmetry, and proceeding to steady, asymmetric flows and finally unsteady 340 

asymmetric flows.  341 

The search for attractors is motivated by the hypothesis that for cases of strong drag, where the 342 

particle velocity lies close to the fluid velocity, a periodic orbit for the particle motion will exist 343 

in the vicinity of a periodic trajectory for the fluid motion, and that if Qa>0 in a region 344 

surrounding the latter, that it should attract particles. For the time-dependent case, we extend the 345 

search to included closed material contours that contain recirculating particles and that vary 346 

periodically in time.     347 
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(a) steady, axially-symmetric 3D flows 348 

The fluid velocity field for this case is given by Eqs. 9c and 10, and these indicate that the 349 

location of the horizontal, periodic trajectory living at the center of the nested tori, is given by 350 

𝑟 = 2𝑟𝑜/3 and 𝑧 =
1

2
.  It is natural to ask whether a periodic trajectory for rigid particles also 351 

exists nearby.  In the slow-manifold approximation, the steady radial, azimuthal and vertical 352 

particle velocities are obtained by writing (4) in cylindrical coordinates, leading to 353 

  𝑣(𝑟) = 𝑢(𝑟) + 𝜀̃ (
3𝑅

2
− 1) [(𝑢(𝑟) 𝜕

𝜕𝑟
+ 𝑢(𝑧) 𝜕

𝜕𝑧
) 𝑢(𝑟) − 𝑢(𝜃) (2Ω +

𝑢(𝜃)

𝑟
) − Ω2𝑟]      (11a) 354 

  𝑣(𝜃) = 𝑢(𝜃) + 𝜀̃ (
3𝑅

2
− 1) [(𝑢(𝑟) 𝜕

𝜕𝑟
+ 𝑢(𝑧) 𝜕

𝜕𝑧
) 𝑢(𝜃) + 𝑢(𝑟) (2Ω +

𝑢(𝜃)

𝑟
)]       (11b) 355 

  𝑣(𝑧) = 𝑢(𝑧) + 𝜀̃ (
3𝑅

2
− 1) [(𝑢(𝑟) 𝜕

𝜕𝑟
+ 𝑢(𝑧) 𝜕

𝜕𝑧
) 𝑢(𝑧) + g]        (11c) 356 

Position of attracting periodic orbit; approximate analytical expression on a slow manifold  357 

Searching for points 𝑟 = 𝑟𝑐 and 𝑧 = 𝑧𝑐 for which 𝑣(𝑟) = 𝑣(𝑧) = 0, and that lie in the proximity of 358 

the horizontal trajectory of the flow, we introduce   359 

  𝑟𝑐 =
2𝑟𝑜

3
+ 𝜀̃ (

3𝑅

2
− 1) 𝑟̃ and 𝑧𝑐 =

1

2
+ 𝜀̃ (

3𝑅

2
− 1) 𝑧̃. 360 

Substituting into the right-hand sides of (11a,c) and setting both to zero results, after neglect of 361 

𝑂(𝜀̃2) terms, in  362 

         𝑟𝑐 =
2𝑟𝑜

3
+ 𝜀̃ (

3𝑅

2
− 1)

𝑔

𝑏
𝑟𝑜                                  (12a) 363 

and 364 

         𝑧𝑐 =
1

2
+

9

2𝑏𝑟𝑜
𝜀̃ (

3𝑅

2
− 1) [Ω2 + 𝑎 (𝑐 +

1

4
) (2Ω + 𝑎 (𝑐 +

1

4
))].                             (12b) 365 
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For the parameters a>0 and b>0, circulation is cyclonic with upwelling in the center of the 366 

cylinder, and (3R/2)-1>0 for buoyant particles, so the 𝑂(𝜀̃) corrections are positive and the 367 

periodic particle orbit lies at larger radius and elevation than the periodic fluid orbit. Note also 368 

from Eq. (11b) that the azimuthal velocity component of the rigid particle on the periodic orbit is 369 

equal to that of the fluid.  370 

An explanatory sketch (Fig. 3) shows the position of the periodic orbit of the rigid particle 371 

relative to that of the periodic orbit of the fluid. Since the rigid particle is buoyant, it can 372 

maintain its level z only if it is situated in a region where the vertical fluid velocity is <0, here to 373 

the right of the fluid periodic orbit. Also, the horizontal pressure gradients associated with the 374 

centripetal acceleration associated with the frame rotation (term Ω2𝑟), the Coriolis acceleration 375 

(term 2Ω𝑢(𝜃)), and the centripetal acceleration due to the azimuthal velocity 𝑢(𝜃)2
/2𝑟 are all 376 

positive for this flow, so that low pressure exists at r=0 and the rigid particle is forced 377 

horizontally inward. To remain stationary the particle must sit in a region where the radial 378 

velocity of the fluid is outward. In this manner, the periodic trajectory exists at a location where 379 

the forces of inertia, buoyancy and added mass can be countered by the drag due to the 380 

background flow.  If we fix all other parameters and increase Ω through positive values, the term 381 

multiplying 𝜀̃ in (12b) will become dominated by the Ω2 term and will grow without bound and 382 

the periodic trajectory may cease to exist. At the same time, a periodic orbit for the rigid particle 383 

can always be found close to that of the fluid,  regardless of the magnitudes of the parameters  Ω, 384 

a, b etc., provided that the relative particle size d/L (and thus 𝜀̃), and/or the relative density 385 

difference 
(𝜌𝑓−𝜌𝑝)

𝜌𝑓
  (and thus 

3𝑅

2
− 1) are made sufficiently small.  386 

Position of attracting periodic orbit; conditions for the loss of periodic orbit  387 
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We have suggested that periodic orbits for rigid particles are encouraged when the  𝜀̃  (
3𝑅

2
− 1) 388 

<<1, and in the case of Run 1 the value is .0066. A cross-sectional plot of the radial and vertical 389 

components of the slow manifold particle velocity in a vertical section through the cylinder (Fig. 390 

4a) shows that the periodic orbit lies at r=.369 and z=.504 (as compared to the values 𝑟𝑐 = .338 391 

and 𝑧𝑐 = .502 predicted by (12).  (The convergence of the surrounding velocity field is too weak 392 

to be seen in the graphic.)  If 𝜀̃  (
3𝑅

2
− 1) is raised to the moderately small value .02, the position 393 

of periodic trajectory migrates towards larger radius (Fig. 4b), the reason being that the greater 394 

buoyancy (larger value of  
3𝑅

2
− 1) or smaller drag (larger 𝜀̃) requires a larger downward fluid 395 

velocity for equilibrium. Since the maximum downward fluid velocity occurs at the outer 396 

cylinder wall (see Eq. 9c) the position of the periodic orbit continues to migrate outward and is 397 

lost (Fig. 4c) when  𝜀̃  (
3𝑅

2
− 1) exceeds a value close to 0.3.   398 

Position of periodic orbit in numerical simulations: 399 

The slow-manifold reduction yields to prediction (Eq. 12) of the position of the attracting 400 

material contour for slightly buoyant particles. We can compare this prediction to what is 401 

observed in numerical simulations using the Maxey-Riley equations (1) and (2) over a range of 402 

particle size 𝑑 (and thus 𝜀̃) and frame rotation Ω. As shown in Fig. 5, qualitative agreement with 403 

the slow-manifold prediction, and the sketch in Fig. 3, holds for a very small 𝑑 (when 𝜀̃ is small).  404 

Here the attractor in Fig. 5 is located close to the central periodic fluid parcel trajectory that lives 405 

at mid-depth, 𝑧 = 0.5 and 𝑟 =
2𝑅

3
≈ 0.33. As 𝑑 (and 𝜀̃) increases, the attractor moves 406 

increasingly up and outward, and although the theory captures the trends, quantitative agreement 407 

with the numerical results worsens. Also, when frame rotation Ω is increased (panel c), the 408 
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attractor responds by shifting up from mid-depth, again in qualitative but not quantitative 409 

agreement with the slow-manifold prediction in eq. (12b).  410 

Geometry of particle trajectories and evidence of attraction in numerical simulations: 411 

If in the neighborhood of the period trajectory the Qa function >0, the phase space for buoyant 412 

particles will contract and the periodic trajectory becomes a candidate for an attractor of such 413 

particles. An example of the attraction towards the periodic orbit is shown in Figure 2c, where a 414 

set of slightly buoyant particles (
𝜌𝑝

𝜌𝑓
= 0.97) has been initialized over the volume of the cylinder, 415 

and eqs. (1) and (2) have been integrated forward in time to determine their subsequent 416 

trajectories. Each trajectory is shown using a unique color. It can be seen that the particles 417 

aggregate within a ring-like structure of decreasing thickness in the general vicinity of the 418 

periodic orbit of the fluid flow.   419 

Basin of attraction – relationship to 𝑄𝑎: 420 

To map out the basin of attraction for the particle periodic orbit we first consider the region over 421 

which phase space contraction for the buoyant particles (i.e. Qa>0) occurs.  This region is shown 422 

in Fig. 6a for the current example, along with the streamlines of the fluid overturning stream 423 

function.  Much of the fluid flow recirculates entirely within the region of positive Qa, whereas 424 

some of the outer streamlines cross the boundary (thick contour) between positive and negative 425 

Qa. If it were the case that rigid particles exactly followed streamlines of the fluid overturning 426 

circulation, then net contraction or expansion of phase space along a rigid particle trajectory 427 

would depend on the sign of the time-integrated value of Qa along streamlines.  The  Qa=0 428 

contour, shown by a bold contour in each frame of Fig. 6, might then approximately delineate the 429 
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basin of attraction for rigid particles.  In the slow-manifold approximation, where rigid particle 430 

velocities lie close to the fluid velocities, the Qa=0 contour might continue to do so.   431 

To test this conjecture, we locate the basin of attraction in the numerical simulations by releasing 432 

buoyant particles at various locations in the cross-section 0<x<ro and 0<z<1, integrating the 433 

subsequent trajectories over many overturning cycles, and recording the position (𝑥𝑓𝑖𝑛𝑎𝑙 and 434 

𝑧𝑓𝑖𝑛𝑎𝑙) of each particle where it crosses the same plane the final time (i.e., recording final 435 

crossing with the Poincare section). The values of 𝑧𝑓𝑖𝑛𝑎𝑙  as a function of initial particle position 436 

are mapped in Fig. 7a, where the large green area corresponding to 𝑧𝑓𝑖𝑛𝑎𝑙 ≅ 0.5 indicates the 437 

region from which particles are attracted. Only particles initiated near the central axis of the 438 

cylinder, and close to the cylinder boundaries lie outside this region, and these rise to the surface 439 

of the cylinder, contact the upper lid, and are no longer followed. It can be seen that the green 440 

area in Fig. 7a has an oval shape that somewhat resembles the overturning streamlines at small x 441 

in the central part of the cylinder, but extends to near the top, bottom and outer cylinder 442 

boundaries at larger x. Thus the Qa=0 contour provides a rough indication of the size and shape 443 

of the basin of attraction, but misses some important details. 444 

Basin of attraction – dependence on Ω 445 

We have seen that the location of the periodic orbit that acts as an attractor for buoyant particles 446 

shifts up and out in response to increasing frame rotation Ω (Fig. 5c). In Fig. 8 we indicate the 447 

corresponding changes in the extent of the basin of attraction with respect to changing Ω by re-448 

computing Fig. 8a with Ω = 0.3, 1, and 10. The two smaller Ω values (0.3 and 1) correspond 449 

roughly to Rossby numbers 𝑎/2Ω of about 1 and 0.2, i.e., are representative of the ocean 450 

submesoscale and mesoscale flows. The 𝑄𝑎-functions for these cases are plotted in Fig. 6b-c. 451 
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Most submesoscale eddies are going to tend to have 𝑢(𝜃)/𝑟 about the same magnitude as Ω 452 

(except on the equator) and mesoscale eddies will have 𝑢(𝜃)/𝑟 ≪ Ω.  The results in Fig. 8 453 

suggest that, while the basin of attraction does shrink slightly with increasing Ω, this dependence 454 

is weak. The main difference between the three numerical runs in Fig. 8 is in the associated 455 

attraction time, which gets significantly shorter for larger values of Ω. This is explored in more 456 

detail below. 457 

Attraction time: 458 

It follows from Eq. (6) that the attraction time towards the periodic orbit should scale as  𝑇𝑎 =459 

[2𝜀̃   (
3𝑅

2
− 1) 𝑄𝑎]

−1

 where 𝑄𝑎 =
1

2
(|𝜁𝑎|

2
− |𝑆|2) with 𝜁𝑎 = 𝜁𝑟 + 2Ω⃑⃑⃑⃑⃑⃑ . Thus, for 𝜁𝑟 ≥ 0, as in 460 

most of our numerical runs (except Experiment 1e), attraction time decreases with increasing Ω 461 

for positive Ω ≥ 0. For negative 𝜁𝑟, which corresponds to the reversed direction of the flow in 462 

our simulations (Experiment 1e), an increase in Ω will initially slow the attraction by decreasing 463 

the magnitude of 𝜁𝑎 all the way to 0, at which point the periodic orbit will lose its attraction 464 

properties, but then will speed up the attraction as Ω is further increased. This trend is confirmed 465 

numerically in Fig. 9, where for the flow parameters corresponding to the “reversed flow” run in 466 

Table 1 (Experiment 1e, with 𝜁𝑟 < 0), we release a sample trajectory within the basin of 467 

attraction and plot its 𝑧-coordinate as it winds around the can and eventually approaches the 468 

attracting periodic orbit. As anticipated, the attraction time initially increases as Ω is increased 469 

from 0 to 0.6, but then decreases as Ω is further increased to 2. 470 

Disappearance of the subsurface attractor when 𝜀̃ becomes too large: 471 

Finally, to illustrate the disappearance of the subsurface attractor when 𝜀̃ becomes too large, in 472 

Fig. 10, we contrast 2 numerical simulations with the same flow parameters (corresponding to 473 
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the “slow overturn” run 1c in Table 1) but different particle diameters, 𝑑 = 10−3  vs 𝑑 = 5 ×474 

10−4. For larger 𝑑, the subsurface periodic orbit for rigid particles is no longer present within the 475 

can, leading to all particles rising up to the surface (Fig. 10b). For smaller 𝑑, the periodic orbit is 476 

still present and acts as an attractor for rigid particles over a significant portion of the can (green 477 

region in Fig. 10a). We note that this run is more typical of oceanic mesoscale or submesoscale 478 

eddies, where the overturning component of circulation is weak in comparison to the horizontal 479 

swirl.    480 

    (b) steady non-symmetrically perturbed case 481 

We now consider a case in which the axial symmetry of the steady flow has been broken, here 482 

through a change in the perturbation amplitude parameter  from zero to 0.25, and in the offset 483 

parameter yo from 0 to -0.2 in the Eqs. 9a,b.  The fluid velocity field now contains something like 484 

a stationary, “mode-1” azimuthal wave in the horizontal velocity field.  485 

The resulting Lagrangian structure (Fig. 2d and e) has a sea of chaos that covers the near-axial 486 

and outer regions of the cylinder, where no unbroken tori anymore exist. Within this chaotic sea 487 

is a region containing a nest of unbroken tori that surround a central periodic orbit. This orbit has 488 

evolved from the central periodic orbit of the symmetry case and is now tilted. Within the nest of 489 

unbroken tori there exist resonant layers, in which new tori have arisen, and the most prominent 490 

is the “island” that is centered near x=0.4 and z=0.2 in the right-half (and near x=0.4 and z=0.2 in 491 

the right half) of Fig. (2d). We further note that this center lies within the region of positive Qa 492 

(Figure 6b). The island corresponds to the yellow tori in Fig. 3e and is produced by a 1:1 493 

resonance, so that the periodic trajectory running through its center executes one complete 494 

azimuthal cycle and one overturning cycle before connecting back onto itself. Thus, in this 495 

steady asymmetric configuration, we now have 2 periodic orbits of the fluid flow – the central 496 
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slightly-tilted periodic orbit near mid-depth (that evolved from the central horizontal periodic 497 

orbit of the axisymmetric flow) and a new periodic orbit running through the center of the 498 

resonant island (resulting from the break-up of the resonant torus satisfying Ω𝜃̃ + Ω𝜙 = 0). 499 

We speculate that for sufficiently small 𝜀̃ a periodic orbit for the rigid particle motion exists in 500 

the vicinity of each of the 2 periodic orbits of the fluid flow. This conjecture is difficult to prove 501 

due to a complex geometry, leading to centrifugal forces that act in different directions at 502 

different locations along the particle path. For now we simply search for the supposed attractors 503 

by releasing particles and following their trajectories.   504 

As shown in Fig. 2f, separate attractors arise in the vicinity of two periodic orbits. The first 505 

appears as a ring-like structure (purple core) lying near the center of the original nested tori and 506 

the second is a similar feature with a red core near the center of the resonant island. The two are 507 

chained together and each has its own basin of attraction (Fig. 7c): the first consisting of a 508 

roughly elliptical patch (inner green region) in the x-z-plane, which corresponds of a slice 509 

through a tube-like structure in 3D, and the second consisting on an annular (blue) region that 510 

surrounds the green region and that occupies a relatively larger volume.  511 

In order to check that attraction of slightly buoyant, rigid particles towards periodic orbits 512 

located near the centers of the resonant islands in the perturbed flow is not limited to the case of 513 

the 1:1 resonance, in an additional simulation (Fig. 11, experiment 2c in Table 1), we adjusted 514 

the background flow parameter 𝑏 in Eqs. (9), which is responsible for the overturning strength, to 515 

create a 2:1 resonance instead of a 1:1 resonance, as in the original run. In this case, the resonant 516 

torus breaks down giving rise to a 2-island chain on the corresponding Poincare section (Fig. 517 

11a), and the periodic orbit that goes through the centers of both islands completes 2 full cycles 518 
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in azimuth and 1 complete cycle in vertical before connecting onto itself. Also, as in the original 519 

run, a second slightly-tilted periodic orbit still exists near mid-depth of the can. When buoyant 520 

particles are released into this flow, two attractors arise, corresponding to the 2 periodic orbits – 521 

one near mid-depth (purple core in Fig. 11c) and another in red near the center of the 2:1 522 

resonant island. 523 

Shift in position of the periodic orbit associated with a resonant island as a function of flow and 524 

particle parameters, and frame rotation 525 

The position of the attracting periodic orbit for rigid particles that is located within the resonant 526 

islands (we will refer to it as the resonant periodic orbit) in the asymmetrically-perturbed flow 527 

depends both on the perturbation strength (via 𝜀), on the flow and particle parameters (via 𝜀̃), and 528 

on the frame rotation Ω. Specifically, this resonant periodic orbit for the rigid particles will shift 529 

away from the corresponding periodic trajectory of the fluid flow as 𝜀̃ and Ω are increased. The 530 

same is true for the slightly-tilted central attracting periodic orbit near mid-depth. This is 531 

qualitatively similar to the shifting of the central periodic orbit up and out from 𝑧 = 0.5, 532 

𝑟 = 0.34 in the axisymmetric flow in response to changing 𝜀̃ and Ω, which we explored in detail 533 

the previous section both analytically (Eqs. 12) and numerically (Fig. 3-5).  534 

In order to numerically illustrate the shift in the position of the attracting periodic orbits, we 535 

present (Figs 12 and 13) numerical simulations in the steady perturbed flow configuration for 3 536 

values of 𝑑 (and thus 𝜀̃) and 3 values of Ω. As both parameters increase, the attractors move 537 

away from the corresponding periodic orbits of the fluid flow. This shift is evident from the 538 

change in the color of the attraction basins in (a,d,g) and from the location of the yellow cloud of 539 

dots in (c,f,i) in Figs. 12-13. Increases in 𝜀̃ and Ω also lead to the shrinkage of the attraction 540 
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basins for both attractors and to a faster convergence rate, as is evident from the tighter cloud of 541 

yellow dots in (c,f,i), as discussed in more detail below. The basin of attraction for the central 542 

attractor – the green region in Fig. 12 – seems to shrink faster than the basin of attraction for the 543 

resonant attractor (the blue-ish region) as 𝑑 increases, so when 𝑑 is increased from  2 ×  10−3 to 544 

3×  10−3, the central attractor vanishes, whereas the resonant attractor is still present (Fig. 12g). 545 

On the other hand, the increase in Ω (Fig. 13) causes a faster shrinkage of the basin of attraction 546 

for the resonant attractor than for the central attractor, so when Ω is increased from 2 to 5 in Fig. 547 

13g, the resonant attractor disappears, whereas the central attractor is still present. Figs. 12g,h,i 548 

(and Fig. 13g,h,i) show cases where this threshold has been exceeded, and one of the attractors 549 

has been lost, whereas the other is still present.  550 

Attraction time: 551 

Similar to the unperturbed flow, the attraction time for attractors in the steady, perturbed flow 552 

may still scale as 𝑇𝑎 = [2𝜀̃   (
3𝑅

2
− 1) 𝑄𝑎]

−1

, provided that  𝑄𝑎 is regarded as a typical value 553 

within the corresponding basin of attraction. The predicted decrease in attraction time with 554 

increasing 𝜀̃ and 𝑄𝑎 is evident from the numerical simulations in Figs. 12-13, where in (c,f,i) we 555 

color-coded trajectory crossings with the x-z Poincare plain by time, with blue/yellow 556 

corresponding to initial/final time. For smaller values of 𝜀̃ and Ω, we observe a wider and more 557 

diffuse cloud of dots (because trajectories wind around the can many times before approaching 558 

the attractor), whereas as 𝜀̃ and Ω increase, the clouds at comparable times become denser and 559 

more compact around the attractors.   560 

Basin of attraction  561 
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For the slightly-tilted central periodic orbit located within the central non-chaotic region near 562 

mid-depth in Fig. 2f, we observe that the basin of attraction – green region in Fig. 7b – extends 563 

roughly from the location of the periodic orbit to the edge of the central non-chaotic region (that 564 

is foliated by discretely sampled closed curves in Fig. 2d). Note that as 𝜀̃ increases, the attracting 565 

periodic orbit moves away from the center of this non-chaotic region towards its edge, leading to 566 

the shrinkage and eventual disappearance of the corresponding basin of attraction, shown by the 567 

green regions in Fig. 12a,d,g).  568 

Similarly, in all of our numerical simulations, we observe that for the resonant attracting periodic 569 

orbit running through the resonant islands, the basin of attraction seems to cover the region 570 

between the orbit and the edge of the corresponding resonant island. An analytical expression for 571 

the width of the (non-degenerate) resonant island in the fluid flow (Pratt et al., 2014) predicts 572 

that Δ𝐼 =
√

𝜖𝐹𝑛𝑚
0 (𝐼0)

(𝑛
𝑑𝑗Ω𝜙

𝑑𝐼𝑗
+𝑚

𝑑𝑗Ω𝜃

𝑑𝐼𝑗
)

𝐼0

, where Δ𝐼 is the deviation in the action coordinate away from 𝐼0, the 573 

value of action at the resonant torus (i.e., at the center of the island). This width depends on the 574 

strength of the perturbation 𝜖, the order of the resonance (via 𝑛 and 𝑚 in the resonance 575 

condition), the background flow (via 
𝑑𝑗Ω𝜙/ 𝜃]

𝑑𝐼𝑗 ), and the structure of the perturbation (via 𝐹𝑛𝑚
0 (𝐼0)). 576 

This expression could be used as an upper limit on the extent of the basin of attraction. However, 577 

because the attracting periodic orbit will move away from the center of the island towards its 578 

edge as 𝜀̃ and Ω increase, the basin of attraction for the resonant attractor (blue region in Figs. 579 

12a,d and 13a,d) becomes increasingly smaller than Δ𝐼. One might speculate, then, that the 580 

attractor will completely disappear when the attracting periodic orbit reaches the edge of the 581 

resonant island. This is the case in Figs. 13g where the resonant attractor is no longer present. 582 
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    (c) non-steady, non-symmetrically perturbed case  583 

The final case that we will consider is one in which the perturbation is asymmetric and varies 584 

periodically in time. The chosen perturbation frequency, 𝜎 = 2𝜋/9.1, causes 2 strong additional 585 

resonances (compared to the steady perturbed case) – one with n=0, m=1, and l=1 (i.e., with a 586 

torus whose overturning frequency is equal to the perturbation frequency) that is shown in blue 587 

in Fig. 2g,h and is located near the outer edge of the central non-chaotic region, and another 588 

resonance, shown in green in Fig. 2g,h, with n=1, m=1, and l=1, which is located between the 589 

central non-chaotic region and the larger n=1, m=1 resonant island (that was present in the steady 590 

case as well). Both of these new resonant structures are time dependent, their shape and position 591 

recurring periodically. For example, the blue island, which looks like a crescent moon pointing 592 

upward on the Poincare section at t=0, becomes a crescent moon pointing downward at time 593 

4.55. The movement of the green island is a more complex, as it turns both in azimuth and 594 

vertical, making one complete loop over 9.1 time units.  Because of the time-dependence, 595 

trajectories must be strobed at the forcing frequency  in order to capture ‘snapshots’ of their 596 

forms as they recur at a particular phase in the time cycle. At the center of each feature is a 597 

closed material curve that also varies periodically. Where the island has emerged from the 598 

breakup of a torus with quasiperiodic orbits, the individual trajectories that populate the material 599 

curves are themselves quasiperiodic.  600 

Particle trajectory computations in this case confirm that the purple, red and green islands give 601 

rise to attractors (Fig. 3i), whereas the blue island does not. In fact, particles that are released in 602 

the blue region converge towards the attractor that lies near the purple region. This is also 603 

indicated by the basin of attraction of the central attractor extending across the space occupied by 604 

the blue resonant island in Fig. 7c. 605 
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IV. Discussion 606 

We have considered attraction phenomena for small, spherical, buoyant, rigid particles in a three-607 

dimensional rotating cylinder flow with azimuthal rotation and overturning. The aim has been to 608 

gain insights into the behavior of slightly buoyant microplastic particles in 3D vortex flows that 609 

qualitatively resemble ocean eddies. The particle motion is governed by a simplified version of 610 

the Maxey-Riley equations (accounting for inertia, buoyancy and simplified quantification of 611 

drag and added mass), and, approximately, by the slow-manifold reduction of these equations. 612 

We have explored a steady axisymmetric rotating cylinder flow and a steady flow with its axial 613 

symmetry broken. In all cases, we have observed emergence of subsurface attracting structures 614 

that lead to the aggregation of buoyant particles towards them. We have linked these attractors to 615 

the periodic orbits of rigid particles that exist in a region of net contraction of the phase space of 616 

the particle motion. The slow manifold equations suggest that periodic orbits for rigid particles 617 

exist near periodic orbits of the underlying fluid flow, provided the drag is sufficiently strong 618 

(Stokes number <<1).   619 

We have also explored one case of an axially asymmetric and time-periodic flow, with focus on 620 

the resonant “islands” that arise due to the time-dependence. At the center of such islands are 621 

closed material contours composed of quasi-periodic orbits of the fluid flow. One such structure 622 

has nearby attractor, also a closed material contour of quasiperiodic orbits for rigid particles, 623 

while a second example does not. A detailed explanation awaits formulation of a quantitative 624 

theory, something that is beyond the scope of the present paper and that will be presented in a 625 

future work.  626 

https://doi.org/10.5194/egusphere-2023-1624
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



31 
 

We have observed that the disappearance of an attractor, which can occur as the result of 627 

increasing particle size or frame rotation, coincides roughly with the displacement of the position 628 

of the attractor to the outer edge of the resonant island from which it sprang. Whether this purely 629 

geometric observation forms the basis for a general criterion for the loss of attraction is 630 

unknown, as a dyamical justification is needed.   631 
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Experiment 𝑎 𝑏  yo    Ω d 

1 – steady symmetric 0.62 7.5 0 0 0 0 0 0 10−3 

1a (small Ω) 0.62 7.5 0 0 0 0 0 0.3 10−3 

1b (large Ω) 0.62 7.5 0 0 0 0 0 1 10−3 

1c (slow overturn) 0.62 0.25 0 0 0 0 0 1 10−3 𝑣𝑠.  

5 × 10−4 

1d (𝑧𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑜𝑟   vs Ω) 0.62 7.5 0 0 0 0 0 Sweep 0 

to 10 

10−3 

1e (reversed flow) -0.62 -7.5 0 0 0 0 0 0, 0.6, 2 10−3 

2 – steady asymmetric 0.62 7.5 0.25 -0.2 0 0 0 0 10−3 

2a (small Ω) 0.62 7.5 0.25 -0.2 0 0 0 0.3 10−3 

2b (large Ω) 0.62 7.5 0.25 -0.2 0 0 0 1 10−3 

2c (2:1 resonance) 0.62 3.8 0.25 -0.2 0 0 0 0 10−3 

3 - non-steady asymmetric 0.62 7.5 0.25 -0.2 2𝜋

9.1
 

0.2 1 0 10−3 

Table 1: Dimensionless parameter values for numerical experiments. Fixed parameters in the 728 

kinematic model (Eqs. 9a-c) are c=0.69, and ro=1/2 in all cases.  Parameters that appear in the 729 

nondimensional Maxey-Riley equation (3) are also nondimensional, with L, U L/U as length, 730 

velocity and time scales. Fixed parameter values based on L=1m and U=1m/s  include  
𝜌𝑝

𝜌𝑓
=731 

0.97, 𝑅 =
2𝜌𝑓

𝜌𝑓+2𝜌𝑝
= 0.680 , 

3𝑅

2
− 1 = .020 𝑔⃑𝑟 =

𝑔𝐿

𝑈2 = 10.0  , 𝜀̃ =
2

9
(

𝑑

𝐿
)

2 𝑈𝐿

𝜈

1

R
=0.33, and 𝜀̃ (

3𝑅

2
−732 

1) = .0067.  Note that  Ω⃑⃑⃑ = Ω𝑘⃑⃑ =
Ω⃑⃑⃑∗𝐿

𝑈
.  733 
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 734 

Figure 1. Three types of two-dimensional eddies with zero frame rotation and for which gravity 735 

is imagined to be zero: solid body rotation (a), constant pressure gradient (b), and point vortex 736 

(c). In each case, the cross hatched area represents a concentration of rigid particles with area 737 

A(t).  738 
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 747 

Figure 2. (left) Poincare section, (middle) fluid parcels trajectories in 3D, (right) buoyant particle 748 

trajectories in 3D for a steady symmetric fluid flow (top row), steady asymmetric flow (middle 749 

row), and non-steady, asymmetric flow. Parameter setting are listed under Experiments 1, 2 and 750 

3 in Table 1. Colors in the left column of panels match the corresponding panel in the middle 751 

column, but the colors in the right column indicated time after release of the particles. Note the 752 

attraction of buoyant particles to a single attractor at mid-depth in panel (c), to 2 attractors in 753 

panel (f), and to 3 attractors in panel (i). Particles are released along a vertical line 𝑥 = 0.334, 754 

𝑦 = 0, 0 < 𝑧 ≤ 0.6 with initial velocity equal to that of the co-located fluid parcels.  755 
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 759 

Figure 3. Sketch showing the position in a vertical section of the periodic orbit (red dot) of the 760 

rigid particle relative to the periodic orbit (blue dot) of the fluid flow. The viewer sees one half 761 

of a vertical slide though the cylinder, with the azimuthal flow directed away from the viewer 762 

and the cylinder center at the left edge. 763 
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 771 

Figure 4. The slow-manifold radial and vertical velocity components for the rigid particles, 772 

plotted in the (r,z) plane for (a) 𝜀̃  (
3𝑅

2
− 1) =.0067, (b) =.02, and (c) =.03.  Other parameters are 773 

as listed for Experiment 1a in Table 1.  774 
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 785 

Figure 5. For the steady symmetric rotating cylinder flow, the coordinates of the periodic orbit 786 

that acts as an attractor for buoyant particles as a function of particle diameter (a-b) and frame 787 

rotation (c). Flow parameters are listed in Table 1 and correspond to Experiment 1 for (a-b) and 788 

Experiment 1d for (c-d). 789 
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 795 

Figure 6. (a): The Qa function for the steady, axisymmetric, cylinder flow with the same 796 

parameter setting (see Experiment 1a) as for Figure 3a-c, and plotted in (x,z) along with the 797 

streamlines of the overturning circulation. The thick rigid curve corresponds to Qa=0.  (b): The 798 

same parameter settings, except Ω has been raised from 0 to 0.3 (Rossby number ≅ 1)   (c): 799 

Ω=1.0. (Rossby number ≅ 0.2). 800 
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 810 

Figure 7. Domain of attraction for the attractors in (a) steady symmetric (Experiment 1 in Table 811 

1), (b) steady asymmetric (Experiment 2 in Table 1), and (c) time-periodic asymmetric rotating 812 

cylinder flow (Experiment 3 in Table 1). (These are the same 3 experiments that were used to 813 

produce Fig. 2.) The color indicates the height (i.e., value of z-coordinate) of the final crossing of 814 

a trajectory with the Poincare section, as a function of particle’s release location. Particles 815 

attracted to the same attractor thus correspond to same color. 816 
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 824 

Figure 8. Same as in Fig. 7a but with frame rotation. 825 
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 836 

Figure 9. For the “reversed flow” experiment (Experiment 1e in Table 1), z-position of a sample 837 

particle trajectory as function of time for 3 values of Ω: 0 (top), 0.6 (middle), and 2 (bottom).  838 

Time t is in dimensionless units (but since our scaling coefficient for time is equal to 1 sec, the 839 

numbers on the x-axis can also be read as dimensional time in sec.) 840 
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 850 

Figure 10. For the “slow overturn” Experiment 1c from Table 1, color indicates the final z-851 

coordinate of a particle’s trajectory at the end of integration time as a function of particle’s 852 

release location for 2 values of d: (a) 5 × 10−4 and (b) 10−3. Yellow corresponds to particles 853 

rising up to the top, whereas green indicates the basin of attraction of the subsurface attracting 854 

periodic orbit. The insets at the left side of each frame show a sample trajectory whose release 855 

location is indicated by the black dot. 856 
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 865 

 866 

Figure 11. Same as Fig. 2(d-f) but with b=3.8. 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

https://doi.org/10.5194/egusphere-2023-1624
Preprint. Discussion started: 27 July 2023
c© Author(s) 2023. CC BY 4.0 License.



48 
 

 880 

Figure 12. For the steady perturbed system (Experiment 2 in Table 1), changes in the location of 881 

the attracting periodic orbits, basins of attractions, and time of attraction as a function of particle 882 

diameter d (and thus 𝜀̃). (a,d,g) show z-coordinate of the last crossing of trajectory with the x-z 883 

Poincare plane as a function of release location; flat regions are basins of attraction for the 2 884 

attactors. (b,e,h) show 20 trajectories in 3d released along a vertical line at y=0, x=0.334, 885 

0.05<z<0.95; denser cores indicate attractors. (c,f,i) show crossing of the same select 20 886 

trajectories with the x-z Poincare plane, color coded by time; blue corresponds to release 887 

location, yellow corresponds to final positions.  888 
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 892 

Figure 13. For the steady perturbed system (Experiment 2 in Table 1), changes in the location of 893 

the attracting periodic orbits, basins of attractions, and time of attraction as a function of frame 894 

rotation Ω. (a,d,g) show z-coordinate of the last crossing of trajectory with the x-z Poincare plane 895 

as a function of release location; flat regions are basins of attraction for the 2 attactors. (b,e,h) 896 

show 20 select trajectories in 3d released along a vertical line at y=0, x=0.334, 0.05<z<0.95; 897 

denser cores indicate attractors. (c,f,i) show crossing of the same 20 trajectories with the x-z 898 

Poincare plane, color coded by time; blue corresponds to release location, yellow corresponds to 899 

final positions.  900 
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